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Abstract 

The concept of coherent states for arbitrary Lie group is suggested as a tool for 
explicitly obtaining an integral representation of the partition function, whenever the 
Hamiltonian has a dynamical group. Two examples are thoroughly discussed: the case 
of the nilpotent group of Weyl related to a generic many-body problem with two-body 
interactions, and the case of ~®SU(1, 1)(k) relevant for a superfluid system. 

1. Introduction 

Several important properties of coherent states make them ideal for the 
description of a system with infinitely many degrees of freedom, in which 
quantum features are macroscopically relevant. They evolve according to 
classic equations of motion and are, therefore, the most suitable ground for 
the picture of a system in which low energy excitations are superimposed on 
a macroscopically occupied ground state which exploits a sort of quasi- 
classic behavior. Moreover, they constitute a set of functional representa- 
tives of the abstract state vector of the system such that every member of 
this set-translationally invariant in the representation space-is an entire 
analytic function. 

These states are in close connection through Bose statistics and, through 
the usual commutation relations of second-quantized field theoreticaI creation 
and annihilation operators, to the well-known nilpotent Weyl group. 

A. M. Perelomov (1972) and M. Rasetti (1973) generalize the concept to 
different groups defining a set of coherent states for any Lie group, invariant 
relative to the action of the group generators. These states are determined by 
a set of points in a suitably defined homogeneous space, and form an over- 
complete system which contains subsystems of complete coherent states. 

As pointed out in Rasetti (1973), the requirement that there be a Lie 
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algebra commuting with the Hamiltonian and that the Lie algebra be 
integrable to a Lie group, enables us to define and use the coherent states 
as "spectrum generating" states. It is just this feature to make coherent 
states interesting, whenever one is in possession of information on the 
Hamiltonian formulation of a theory, in the sense of its connection with 
the structure of the underlying dynamical group. In particular, these states 
may be used as the basis for obtaining a simple representation of the 
partition function for the given Hamiltonian, as an integral over the group 
manifold. 

Thermodynamic properties of the system, and possible singularities or 
mathematical pathologies of the partition function, can then be viewed in 
the perspective of the group manifold topology. In Section 2, we explicit 
the calculation in the case of  nilpotent Weyl group coherent states, essen- 
tially on the lines of J. S. Langer (1968). The dynamical group is in this 
case a broken symmetry, but a perturbative procedure is yet possible. In 
Section 3, the generalized procedure for both compact and noncompact 
Lie group coherent states is developed. Section 4 is devoted to the discussion 
of another case of particular interest: namely G ~ LI® su(1,1)(k) suitable 
(Solomon, 1971) for multilevel superfluid Bose system. Section 5 finally 
concludes with a brief discussion about the analiticity properties of the par- 
tition function Z over the symmetric space associated with the coherent 
state. 

2. The Special Nilpotent Weyl Group 

The Lie algebra of this group is isomorphic to the Lie algebra produced 
by the usual Bose creation and annihilation operators a~, ak through the 
commutation relations 

[ak,ak'] = [a*k,a~:'] = 0 (2.1) 

[ak, a~'] = 6k, k' (2.2) 

The usual Hamiltonian with two-body interactions can be used without loss 
of generality (we label the single particle states with the same symbol as for 
the momentum) 

1 ~ k  t ?  =Eeka  +Ud E ( )ap+kaq-kapaq (2.3) 
k,p,q k 

where the single particle energy ekhas to be modified in order to account for 
the lack of the number of particles conservation by the introduction of the 
chemical potential/1: 

gk = ek - /2  (2.4) 

and g2 is the volume of the system. 
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The operators of the irreducible unitary representation of the Weyl group 
are of the form 

T = e i(~ ~ ( z )  (2.5) 

where ¢ is a real number, z = (zl ,  z 2 , . . .  ZN) is an N-dimensional complex 
vector-N is the number of levels of the system-and 

~ (z ) ]i (z') = ei Im (z'i') ]I (z + z') (2.6) 

If I 0 > is the "vacuum" vector defined by the set of equations 

ak I 0 > = 0 (2.7)  

and it is chosen to be the stationary point in the Hilbert space of the system 
relative the action of the subgroup generated by the exponential mapping of 
the identity operator, the system of coherent states is the set of vectors 
(Klauder, 1970) 

+ 

l {z} > =I~ l  zk > = e~Z~t} t 0 > (2.8)  
k 

It possesses the completeness property 

f I - I  1__ d Re zkd Im zk I {z} ) < {z} K = I (2.9) 
k 7r 

The partition function for H may then be written 

Z = Tr[e -~H] = f d g  {z} < {z} I e -13H [{z} > 

where 

(2.10) 

dp{z } =l-I 1--d Re zkd Im zk (2.11) 
kTr 

is the invariant measure over the homogeneous space associated with the 
coherent state system. Explicit evaluation of the integrand is possible, re- 
calling that 

a k l z k > = z k l z k ) ;  <zkla~=Z-k(Zkl (2.12) 

In general the matrix element <{z) ] e-~H[ (z '})  can be in fact expanded 
diagrammatically. 

Introducing a free-energy functional F{~-, z'}: 

< {z} I e-~H I {z '} > = < {z} I{z'} )e  -#F{i'z'} (2.13) 

the expansion is equivalent to giving F as a power series of zk, z~, (Dyson, 
1956): 

F{'i,z'} = F ( ° ) ~ , z  ') + ~ ' F (n )~ , z  '} (2.14) 
n=2 
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- -  i 1 - -  t 
F (°) (z,  z } = - - f i  ~ (e - ~ k  - 1) zkzk 

k 
(2.15) 

~ I t ? 
F(n)'[z,, z ' }  = Wn(kl, kz . . . . .  kn ; k a, ka . . . . .  k n )  

~(k}, {k'} 
n n 

zk, z~, " ' ' z-k .z; i  z'k', "" " z i '~ (  2 kt - Y k~) 
i=l  i=1 

(2.16) 

The delta function is explicitly written because the potential conserves the 
total momentum. Each Wn is given by the sum of all diagrams with n particle 
lines. 

In the present case, the nilpotent algebra, strictly speaking, does not 
correspond to a dynamical group of the Hamiltonian, but-according to the 
prescription of Rasetti (1973)- to a fixed order in l z I it commutes withH, 
and may be integrated to form the group. 

There is a small breaking of the translational invariance in the representa- 
tion space, which-due to the mentioned global property-can be handled in 
a perturbative way. 

For our purposes of exemplification the only term we are to be concerned 
with in the following is the two body term W2(kl, k2; k'l, k'2). Its diagram- 
matic expansion is obviously given by the series in Figure 1 or the equivalent 
integral equation in Figure 2. 

The equation of the partition function is now simplified by noting that 
the total number of excitations, at low temperatures, is small compared to 
the number of particles; thus for kB T'~ ek, (a~ak) must be small, and since 
(a~ak) "" [Zk Z 2 the main correction to Z (°) (the partition function in 
absence of interaction) comes from small values ofzk.  

Consequently one expands the interaction part of the integrand about 
the origin in z-space. 

I I 
I I 
I I 
1 I 

" I - - - - 1  

II 
+ + , . . .  

Figure 1 
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1 I 

Figure 2 

Denoting by F(z} the diagonal part o f  the functional, F{z,  z}, one gets: 

Z = f d p ( z )  e -aF{z} = f d p { z )  e -t~F(°){z} e -~F(2)(~} • . • 

= f d p { z }  e -flF(°){z} [1 - 2 W2(kl, k2; k'l, k'2) Zktgk ~ 
[ {k} ] 

' " -~ ~ -" ~:'2) | 
• z k ; z k , 6 ( k l  + k 2  - k l -  + • • • 3 

t - > t  - -  

= Z ( ° ) -  ~ W2(kl, k2 ;k l ,  k'2) 5(kl  + f c 2 -  ka k'2) 

{k} f du(z} e-~F(°)(z) "zkl Z-k~ Z'~' z'k': + ' ' "  (2.17) 

where use has been made of  the overlap integral 

({z} I {z'}) = e x p { -  ~ [a l zk - z ' k l2 - i lm( - z~z 'g ) ] }  (2.18) 
k 

and of course only terms involving just two particle diagrams have been kept. 
It is obviously straightforward to extend the procedure to include higher- 
order terms, but this does not affect the generality of  the description o f  the 
method. 

It is convenient to introduce "polar"  coordinates 

zk = t Zk i exp (iOk) (2.19) 

and one has 

d Re Zkd Im Zk = I zk I d I zk I dOk = IdrkdOk (2.20) 

where rk = I zk 1 z 
The integral part o f  equation (2.17) becomes then 

f alIA £Z} e-flF(O){z) -Zk, "Zk 2 Zk 3 Zk n 

i=l 0 0 

where (z'} is the complementary set to (zk~, zk 2 , Zk s , zk,} in {z}, and 
~Oki)  = 0k~ + 0x 4 - 0kl - 0k2. Note that because of  the factor e i~'(°ki) 
the integral will vanish unless the total phase ~(Oki} vanishes. Together with 
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the momentuln conservation delta function in front, this leaves only two 
choices; either kl = k3 or k2 = k4, giving obviously identical contributions 
to W2. For higher orders the same mechanism would originate a sum over 
the permutations of the external particle lines. 

There are, therefore, only two independent momenta left in the definition 
of the partition function 

Z=z(O) _ 2 ~ W2(kl,k2;kl,k2)fd#{z"} 

2 ~ e-aP(°){z} • [ 1-~ f rlqdrkl] (2.22) 
i=l 0 

where the phase integrals have been executed, each of them giving a factor 
2zr, and {z"} U {zk~, zk~ } = {z}. Recalling the form of F(°) {z), integrals over 
d#{z"} give each a factor 

f e_Z~fkiO_~ ~ ~z) 1 l~r d Re zkid Im zki = 1 _ e_~  & i =/: 1,2 (2.23) 
o 

The remaining two integrals are 

f e-rki(x-e ) rkidrki = 1 ~ , i = 1,2 (2.24) 
o (1 - e -~ ki)2 

Thus, there is a factor of (1 - e-#eki) -1 for all ki, and the product of all of 
these is just the partition function for non interacting particles Z(°). Z becomes 
then 

1 W2(kl, k2; ka ' ks ) + . . . ]  Z = Z  ( ° ) [ 1 - 2  _ . ~  (1-e-#ek"'l)( - e  -#e~2") 
kl, k2 (2.2s) 

And the free energy 

1 +2 ~ t 
F= --~ lg Z ~'F(°) /3 k,k,,  (1 -- e-#~'kl) (1 -- e-~k2) Wz(kl' k2;ka'k~)+"" 

(2.26) 

The second factor is the leading dynamical correction to the free energy. 
Other factors would of course be recovered by expanding F(z} to higher 
orders about the origin in z-space. Now only the explicit calculation of W 2 
is left over in order to evaluate both the partition function and the free 
energy dynamically corrected. The calculation is standard, and it is shortly 
discussed in the following for sake of completeness, even if it somewhat 
exorbits in its spirit the content of the present paper• 
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First an integral equation for W 2 should be written consisting of  the 
formal sum of all the diagrams. Such an equation, however, depends on the 
temperature in a complicated way which makes it rather different from the 
ordinary scattering equation. Observing that temperature enters each dia- 
gram only through integrals over Boltzmann factors, which are indeed con- 
volution integral with finite upper limit (the energy is the sum of all unper- 
turbed single particle energies), the use of the "temperature" Laplace trans- 
form allows us to relate the equation for W 2 to that of the usual t-matrix 
(Bloch and De Dominicis, 1958; Abrikosov, Gorkov, and Dzialoshinski, 
1963). 

The transformation can be performed over each diagram separately, and 
this amounts to a change in the rules for evaluating the diagram itself. 

Consider Figure 3. Its value, by the usual rules is 

® 
p+ k q-k 

q " ® 

Figure 3 

_ _  1 e -[~E~ - -  e - # E 2  
1 V(k)  : e - Y E ' e - ( ~ - t ~ ' ) E ~ d f l ' = - ~ V ( k )  "-E~t- ~ (2.27) 

~2 o 

where the energy of the two free particles is, e.g., 

E1 = ~p + ~q = ep + eq - 2U (2.28)  

E 2 = ep + k + eq _ k - 2# (2.29) 

Since the total momentum of the pair if=p" + qis  a constant of the motion 
and will be the same in each term, it is convenient to label the two con- 
figurations O and ® by half the relative momentum 

d = ~ ( / ~ - q )  Q' =½ [(/~+ k ) -  ( q -  k)] =(~,~c (2.30) 

The Laplace transform of the diagram then reads 

1 e -~EQ - e-~Ea'd[ 3 _ 1 V(k)  1 (2.31) 
f e - ~  -~ V(k) ~'e - EO.' ~0.' + s a BQ + s 
o 
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O' =O+k  

k 

Q 

Figure 4 

The Laplace transform of a convolution is just the product of individual 
Laplace transforms. 

By comparison of this result with the diagram, one extracts the following 
set of  rules (in the graphical representation we will use wavy lines for the 
interaction, in order to distinguish the two). 

Given Figure 4, one has 

(a) a factor V(k)/gZ for each interaction line; 
(b) a factor 1/(E + s) = J~ e -a(E+s) d(3 for each horizontal line which may 

be drawn between successive interactions; 
(c) symmetry factors and sum over internal momenta as usual. 

In this way one may define the Laplace transform of W 2 as 

f e_gSW2(~, q; k + p, q _ Tc)d(3 = 1 (Q, Q ) 1 (2.32) 
O EQ'+S g2 EQ +s 

and the matrix t(Q, Q') turns out to be the usual t-matrix for the scattering 
of two bosons of total energy E = - s .  Indeed, it satisfies the integral equation 
(Figure 5) which, written explicitly reads: 

t ' 2 1 
(a, Q ) = V(k) - -~ ~ v(a '  - a") EQ" + s t(a,  a") (2.33) 

Q, 

+ 

Figure 5 
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Once such an equation is solved, W 2 is simply determined by computing the 
inverse transform 

$o+i~  
~_~ ~ ~ , 1 

W2(~,q;p+k,-d_-~) = 1 J l~ t (Q ,Q)EQ+se#Sds  (2.34) 
2ni~2 EQ' + s 

8 0 - -  ioo 

where the integration is over the usual BfiSmwich contour defined by s o to 
the right of any singularities in the s-plane of the integrand. 

In other words, the leading dynamical correction to the partition function 
is related to the inverse Laplace transform of t(Q, Q). 

Now it is reasonable to assume that t(Q, Q') is analytic in s except for the 
poles corresponding to the bound states of two bosons, and possibly along a 
branch cut, i.e., a densely discrete set of poles corresponding to a band. 

In such a situation, the contour of integration for the integral defining W 2 
may be deformed and the integral evaluated as the sum over the residues plus 
the integral around the branch cut. 

One gets 

W2(P- q; P + ~, $_ -~) = t(Q, Q') is = - E Q  e - [ 3 E Q  - -  t(Q, Q') Is = -EQ e -~EQ' 
Eo-E¢ 

g+ 

t J ~ 1 _ ie ll~Q +-----~s e~Sds (2.35) +-- - Im t (Q, a ' )  I s -  
~r EQ, +s 

S 

where the branch cut lies along the axis between s_ and s+ and I m t  is to be 
evaluated below the cut. 

Generally, the branch cut integration leads to a negligible factor in the 
sense that it is of higher order in the temperature. The diagonal element of 
W2, which enters the correction to Z can therefore be approximated as 

1 
W2(p, q; p, q) ~ -~ ~ e-¢eO t(Q, Q) Is= -EQ (2.36) 

3. The General Case 

The generalized definition for coherent states of an arbitrary Lie group G 
is the following. Let T be the irreducible unitary representation of G acting in 
the Hilbert space ~f;  [ d9 o) some fixed vector i n ~ ; / ~  the stationary subgroup 
of G with respect to [ cb o ) and M = G/~ the homogeneous factor space. Then 
a system of coherent states is the set { t Cbg ) } 

! ~bg)= T(g)[~o) ,  gEG (3.t) 

where g runs over the whole group G. The coherent state I ogg > is then uniquely 
determined by the point x = x(g), x E M  

[6pg>=e ia(g) Ix>; I ~o> = 10> (3.2) 
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In (3.2) e ic'(h) is a one dimensional unitary representation of/~, for h E~;  
the function ¢z(g) on the other hand is determined on the entire group G and 
forg E/~ C G, it coincides with a(h). It can be easily seen that the set of 
coherent states is invariant relative to the action of the group representation 
operators: 

T(g')ldi,g>=T(g')T(g)l~o)=T(g')ldi, o>=l,bg,) (3.3) 

where 

This formula can be rewritten 

with 

g" = g'g e G (3.4) 

T(g') I x ) = e-i'~(g) T(g') t ~g ) = e-ia(g) 1%" ) 

= e -ia(g) e i°ffg') Ix" ) = e i#(g'g') [g'x) (3.5) 

~(g, g') = ~(g'g) - ,~(g) (3.6) 

showing that the complete set of coherent states is actually generated by the 
action of the group G on the homogeneous space M. This isomorphism be- 
tween a/g, and a set {f} of analytic functions over the manifold M, is of 
special physical interest in the case when the functions are square-integrable. 
The system of coherent states can then be defined whenever the integral 

f l  (0 Ix)t2dux =P (3.7) 

where dvx denotes a "measure" on M, converges, i.e., F is a finite constant. 
In such a case 

1 
-~ f d . x  [ x ) ( x  [ =I  (3.8) 

and one can expand any arbitrary state in coherent states. 
Moreover on M one has the important set of two points amplitudes 

("reproducing kernels") 

1 
K(x,y)  =-~ (x lY) (3.9) 

which satisfy the integral equation 

K(x,z)  = fat2; K(x,y)  K@,z) (3.10) 

i.e., K reproduces itself under convolution, and for an arbitrarily chosen 
function f E  {f}, gives rise to the integral identity 

f(x) f c t ~  <x I y ~ f ( y )  (3.11) 
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This is equivalent to performing a harmonic analysis on M in terms of 
irreducible representations of G (compare for example the solution of 
Helmholtz equation in terms of prolate spheroidal coordinates in R 3). So we 
may think of K as the kernel of a linear transformation in M. Due to the 
general differential geometric versus algebraic theoretical approach, the 
method is valid for both compact and noncompact groups. 

The partition of identity, which depends on the overcompleteness of the 
set of coherent states system (this means that there are subsystems still being 
coherent and complete states), allows us to write the partition function Z as 

z =  f d,,x<x [e-¢Hlx}  = tim fd.x(x [ ( I -  ~ H ) n ' l  x )  (3.12) 
M #  n' "-~ ~ M # n 

[ x ) being the coherent states for some Lie group G, and M # C C_ M. 
The group G is now assumed not to be a symmetry group of the 

Hamiltonian H, but its dynamical group, i.e., a group whose algebra may be 
used to generate the spectrum of H. In this case the dynamical problem 
involves a Hamiltonian which may in general be expressed in terms of a set 
of operators which are generators of the algebra g of G. In the simplest case 
H is a linear combination of the dynamical group generators (possibly a 
direct sum if the spectrum generating group is a direct product of subgroups 
G(k) ) 

n 
H= ~, *k 6o]J ( k )  (3.13) 

where the index k runs over the set of labels o fG  (k), and denoting by ai]/ 
the structural constant of G, g is defined by 

[ji(tc), j j (k ' )]  = cgi] 1 j1 (k) ~ R', k (3,14) 

(summation is implied on the dummy indexes). 
A general element of the Lie algebra can be written as 

S = i ~ ]  - g J?) (3.15) 

where 

gJ =hJ i ,  g] er =g i : [  (3.16) 

g -  (gl . . . . .  gn) being an n-dimensional complex vector. The Lie group is 
obtained from the algebra by the usual exponential mapping: the operator 
in (3.12) is just a representative T(go) of a selected go G G (in general 

go = I~k ®g(oK)) - 
Differential operators on •corresponding to the infinitesimal generators 

]/(k) may be obtained by standardized procedure, and finally all the irreducible 
representations can be found by considering the action of such generators on 
the monomials in Jt °. Unitary irreducible representations are constructed by 
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suitably normalizing the basis vectors, introducing an inner product and 
imposing the proper hermiticity condition on the generators. 

The orthonormal basis vectors may typically be labelled by the eigen- 
values of the Casimir operators 6"(k) and of one of the infinitesimal generators, 
say d~k) (Indeed they are eigenvectors o f J  (g) in the representation corres- 
ponding to the subgroup ~.) 

In principle a rotation may be performed in the space of the algebra about 
some )~k) axs-which is just a generalization of the Bogolubov transforma- 
tion (Solomon, 1971) 

R(Ok) = exp [--/J(~k)0k] (3.17) 

R = ~ n(k)(Ok) (3.18) 

and the set {0k) be chosen in such a way that the rotated Hamiltonian 

HR =RHR -1= Y. cSkJ(~ k) (3.19) 
k® 

depends-linearly-only on the diagonalized generator. 
The eigenvatues of the Hamiltonian are then trivially dependent on the 

eigenvalues o f J  (k). That is the reason why the group G is referred to as 
energy spectrum generating group, even though it is not itself a symmetry 
group of the Hamiltonian. 

According to the general definition the set of coherent states are points 
of the manifold M, on which the action of the group is given by a differ- 
entiable mapping 

f :  G x M-+ M : (gx)-+ f(x,g) (3.20) 

For a fixed Xo EM, the corresponding coherent state is determined by the 
mapping 

x(g) = f(x,g) (3.21) 

such that x-1 (Xo) =/;; where/~ is the closed subgroup of G which leaves Xo 
fixed. Since A is closed it is again a Lie group (Rasetti, 1973) and G/~ is an 
analytic manifold. 

The map x_ induces a map x-: G/~-+ M: (gfi)  -+ f(g, x). This mapping is 
well defined since/~ leaves the point Xo fixed and the following diagram 
commutes 

G ~M 

where rr denotes the natural projection g-* g~ of G onto G/~. 
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tt follows that the orbits of G on M are submanifolds of M. Complete 
coherent states constitute therefore a set M # of orbits in M. On the other hand, 
in our case HR is nothing but J,~ and its action over Ix) induces a flow onM. 

( x ' ] e - ~ H R l x ) = I - I ( x ' i T ( g ( o k ) ) J X ) = ~  (x'Ig(k)X) (3.22) 
k® k 

where T(g(o k)) is the representative of the group translation induced on M by 
the rotated Hamiltonian HR. 

Note that since the integral in the definition of Z is over the manifold M, 
it is invariant under the substitution of H with HR. 

It was already pointed out that 

( X '  [ X "  ) = e i[°e(g') - c~(g") ] ( 0 [ T ( g ' - l g , , )  [ 0 ) = ( x "  [ x '  } (3 .23)  

and therefore 

(x ' lg(k)x"} = e i[a(g')- a(g")- t~(g(o k), f ' ) l (  0 ! T(g'-lg(ok)g") I 0 ) (3.24) 

It follows that evaluation of Z is nothing but an integration (indeed over 
the submanifold M # of all the group orbits) of the scalar product of the 
generic coherent state with the fixed vector l 0). 

It is to be noted how, even in the case when H is not simply linear in the 
Ji's, the application of Baker-Campbell-Haussdorff formula, which is at the 
basis of our generalized Bogolubov rotation, together with the commutation 
relations (3.14) lead to the same structure when G is the spectrum generating 
group of H. Moreover, the exponential mapping does not have a vanishing 
Jacobian at the origin (i.e., it is a diffeomorphism of an open neighborhood 
of zero in g (gt . . . . .  gn = 0) onto an open neighborhood of the identity 
in G) and therefore, any analytic function at the identity can be expanded in 
some neighborhood of 0 Eg. 

This leads to a diagrammatic expansion very similar to the case of the 
previous section when the group G is not itself a spectrum generating group 
(as the Weyl group) but the terms breaking the symmetry are "small." This 
is very similar to a random phase approximation. 

Before closing this section, it is worth observing that the proposed 
method can be considered as a sort of generalization of the Feynman's path- 
integral approach to statistical mechanics. 

4. Superfluid Example 

It has been shown by A. I. Solomon (1971) that in the framework of the 
Foldy model approximation (Bassichis and Foldy, t964), a many level 
superfluid system has a spectrum generating group which is a direct product 
legvels) . I I  ®SU(1, 1)(k) (where as usual the index k labels both the momenta and the 

The Hamiltonian in such a case may be written 

H = ~ N V x ( _ j } k ) + l a k j ~  k) 1 1 2 - i/ak) + i N  Vo (4.1) 
k® 
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where N is the total number of bosons, ek the energy of  level kth, Irk the 
Fourier transform of  the interaction potential and 

Pk = 1 + e----C (4.2) 
NVk 

j(k) (i = 1,2, 3) are the generators ofSU(1, 1)(k), such that 

y(k)  r ( k ' ) l  = : r ( k ) ~  ( k ) , j ( k ' )  i ] (k) '~  , 
1 , ~ 2  J - ~ ' a  okk';  [J ] =  t kk ;  

j(k) r(k ')  1 = Dr(k)8 , (4.3) 3 ~ a l  J 2 k k  

By the hyper-rotation 

R = I-I R(k)(Ok), R(k)(Ok) = exp (--J(k)Ok) (4.4) 
k ®  

with 

one gets 

Ok = coth -1 #k (4.5) 

HR = RHR-1 ~® (csch OkJ~ k) 1 V ½N 2 = - ] P k ~  x + Vo (4.6) 
k 

The system of coherent states ( [ t )} for the universal covering group of 
SU(1, 1) has been thoroughly discussed by Perelomov (1973). Its relevant 
properties are briefly reconsidered hereafter. 

The factor space M, isomorphic to the upper sheet of a three-dimensional 
hyperboloid, is the unit disk It  I ( 1, whose invariant Riemannian measure is 

d R e t d I m t  
dP(t) = (1 - t t 12) 2 (4.7) 

The scalar product is given by 

( t  t ~ ' )= (1  - I t '  [2)~ (1 - I t  12) K (1 - ~ ' t )  -2K (4.8) 

where K is an arbitrary nonnegative number, and the condition of  completeness 
has the form 

2K - l f dp(t) l t ) ( t  [=i  (4.9) 
7r 

Finally, the action of a group representation operator T(K)(g) on I t )  
results in 

T(K)(g) I t )=  ei~ [ ~ ' ) (4.10) 

where, parametrizing the group by the set of  2 x 2 complex matrices 

d e t g =  lal  z - l b 12 = 1 (4.11) 
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one has 

a~ - b 
~' :- -b'~ + a-' 0 = 2t~ arg (a - b~) (4.12) 

so that 

(r/t T(K)(g) I{" > = e i¢ (r/[g~') = (1 - jr/12)~(1 -- j ~" 12) to(a" - -  b~" + b ~ -  a~')-2~ 
(4.13) 

and 

<~ [ T(K)(g) [ ~ > = (1 -- I ~ 12)2K(~- a I ~ 12 -- 2i Imb~) -2~ (4.14) 

If the above-mentioned procedure of  rotation is performed, the exponentia- 
tion of  the Hamiltonian leads simply to the irreducible representation of an 
element h of  the subgroup t~; 

h _ - ~ / 2  0 /5 
e-iqJ 

and the representation T of  G being restricted on the subgroup has to contain, 
by the Frbbenius reciprocity theorem, the one-dimensional abelian rep- 
resentation of/~ itself. Except for a phase factor 

a 
- .  = eit~ 
a 

~' is identical to ~: 

(~ I T(K)(h) I ~> = (1 - l~ 12)2~(1 - e i'p ]~ 12) -2Kei~q' 

Substituting back into (3.12) one gets 

={ f Z ~ e~N(ukVk-NVo) 2K ! csch Ok 
k 7r 

f~ l (1  

(4.15) 

d Re ~d Im ~(1 - I~ 12)2K- 2 t 

(4.16) 

The analysis of  Solomon shows that the Casimir operators 

ck  = - ( J } k ) ) 2  _ + 

can be written 

Ck =/k(J'k + 1)={(A~  -- 1) 

(4.17) 

(4.18) 

where 

A k = a~a k + -- aLka-k (4.19) 
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are the differences between number of particles in opposite momentum 
states, so that 

Jk = -½ - 1 I A k I (4.20) 

On the other hand, the only allowed representation is given by the positive 
discrete series (Vilenkin, 1968) 

] ~ g ~ +  (Jk), Jk = -K (4.21) 

This suggests the choice K = 1. 
Such a choice may appear singular at first sight, because of equation (4.9), 

but the limit ~ ~-~ indeed exists and it is finite. 
Any integral over the unit disk can, in general, be reduced in the form of 

ordinary integrals performing harmonic analysis (Helgason, 1962, 1965) 
over the non-Euclidean manifold D - {~ : ] ~ ] (1 }. Denote in the following 
by B = ~D the boundary olD,  and define 

(~, b) 
(~,b)=(l_ _1~12)2 , ~ E D ,  b E B  (4.22) 

as the non-Euclidean distance from 0 to the orthogonal trajectory to the 
family of all parallel geodesics corresponding to b = e i(~ , passing through 
~((~, b) is the usual inner product in R2). Consider moreover the Hilbert 
space 

~ x  =(hx(O = f e( iX+O<~'b>h(b)  db lh E~2(B)} (4.23) 
B 

Then 

[Tx(g)hx] (0  = hx(g -I 0 (4.24) 

define the unitary irreducible representation of G in Jt°x. Moreover 

h~,(g-1 ~) = f e(iX + 1) < ~, b > e ( - i k  + 1) (g.  O, b ) h ( g - l b ) d b  (4.25) 
B 

On the other hand 

p ( ~ , b ) = e 2 < ~ , b )  = 1 - i ~ l  2 
1 - 2 1 f l c o s ( 0 - q ~ ) + l ~ l  2, ~ = l ~ l e  i° (4.26) 

is just the Poisson Kernel expressed in non-Euclidean terms. Therefore re- 
calling the Laplace-Beltrami operator (Karpelevic, 1965) on D 

A :f--> (4.27) 

with 

gq = [1 - I~ I:] -26q (4.28) 

g/] = (g#.)-a; det(gii) = (1 - ] ~ 12) -4 (4.29) 
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where 8i] is the Kronecker delta symbol 

A t = [ 1 - 1 ~ l  2 ]2 ~[Re~]2 +~ (4.30) 

one easily f'mds that any power of the Poisson Kernel gives an eigenfunction 
of the non-Euclidean Laplacian 

A~ [P(~, b)] u = 4U(/~ - 1) P(~, b); /~@C (4.31) 

with eigenvalue independent on b. 
IfM(B) denotes the set of analytic functions on B, which is considered as 

an analytic manifold (observe that M carries a natural topology), the con- 
tinuous linear functions v : M(B) -+ C constitute a space Ma(B) dual of 
M(B); v are called analytic functionals on B. 

A theorem by S. HeIgason proves that 

F(~) = f P(~, b)~dv(b); v EM a (4.32) 
B 

are eigenfunctions of/',~, with real eigenvalues if ~ E R. 
Hence integration over ~" amounts to performing harmonic analysis over D 

with respect to G. One may check there exists a measure 

such that 

f •xdu(X)=f(D) (4.33) 
R/Z2 

(the integration is over R/Z2, because of definition (4.23) and equation 
(4.24) which imply that T~.~ is equivalent to Tx~ only if ~1 = - X2). One has 
therefore: 

ff(~)du(~) = f db y(X, b) &X, b) (4.34) 
D R x B  

where 

7, l f e(_i• + (X' b) = ( - ~  O 0<~' b> d#(~) (4.35) 

and 

f(?v, b) = f f(~) e (-ix+ 1)<~,b> dU(~) (4.36) 
D 

being 

1 
f ( ~ ) = ~  RfBf(X,b)e( iX + O(~'°> dtJ(X)db (4.37) 
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In the present case the calculation is much easier because f(~) = f #(r) is only 
function of  the distance r from 0 to the geodesics through 

1 l + l ~ l  
r = ~ In 1 - [ ~------~' I ~ I = tanh (4.38) 

and 

dg(~) = rr sinh 2r.  dr; 0 ~ r < (4.39) 

Both ffand 2x are function of X alone 

f e (ix + 1) (~, b ~ db = P ~ - ~ i x  (cosh r) cosh (2r) 
B 

and 

(4.40) 

Lx(X) = rr ; P_~_~ix(cosh r) cosh (2r) sinh (2r) dr (4.41) 
0 

while f# (r )  is simply the Mehler transform off(X);Pn(cosh r) being the 
Legendre function. A simple calculation and changing of  variables allows writing 

20k 
1 y [  ~ E Ak  e d X ( X + I ) ( I _ e - t 3 E k x )  (4.42) 

Z = ~ -  e ~  ( cosh 0~ -20kf -~- x 2 + 2Akx + e ~e~ 
e 

where 

sinh 20 k ] 
Ak = 2 cosh 20 k - e -~Ek 

(4.43) 

O k being given by equation (4.5) and (4.2), and Ek by the known Bogolubov 
formula 

L'k = (ek ~ + 2ekNVk)~ (4.44) 

Use now the integral representation (Vilenkin, 1968) 

dw ~/mn(cosh 7") = ~r,w t -n  osh -~ + z sinh x/w 2 - 2w cosh r + 1 

(4.45) 

where the contour P' is denoted in Figure 6, and 

w - cosh r -+ X/w --7 - 2w cosh r + 1 
Z =  

sinh 7" 
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k S . ,  = 
F' 

Row 

Figure 6 

the radical being chosen such that 1 <~ [ z j <~ coth (7"/2); for the Jacobi 
function N Im n (cosh 7.), by means of which the matrix elements of the rep- 
resentation 

T(~)(Xr), gr =- 

7. sinh 2 cosh 

sinh 2 cosh 

can be expressed as 

Eg21 CSU(1, 1) 

m, n 
(4.46) 

Contracting the integration contour to the segment which it encloses, 
assuming ] = - o  = - ~, one gets 

with 

T 

- }  ! f c o s h  [(n+ 1)t] cos [(2n+ 1)a] 

• n + * , n +  ~ (cosh r) = --0 ] c o s h  2 r _ cosh 2 t 

2 2 

7" 
cosh -- 

2 
COS 0¢ = - ~  

T 
cosh - 

2 

(4.47) 

(4.48) 
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I n 1 1 
,,-~ kEk, (--~,-~) g,,(k)~ (4.49) Z = ~ e ~t~Ek ~ ~ -n k, ,k ~so 

k nk 

g(0k)_ cosh0 k sinh0k I 
sinh O k cosh O k (4.50) 

The use of coherent states gives at once the result which, by use of  the 
explicitly calculated eigenstates of the Hamiltonian (Solomon, 1971) 

(-k,~). (k~, 
I ~{nk}>=l-I ~ tmkn k tg " ) tmk)  (4.51) 

k ® m k  

cosh sinh 7 
(k) = (4.52) go ~ 0__kk 

sinh cosh 2 

could have been obtained-in the relatively simple example here examined- 
by direct computation. 

The above discussed method is, however, more powerful. Indeed, recalling 
the general relation between Hand G (Rasetti, 1973), and the characteristic 
property of  coherent states (Perelomov, 1973) 

I t > = ( 1 - 1 t l 2 )  ~e  ~÷'k)-'¢ 10) (4.53) 

and 

t j÷(k) ] t > = (j~k) _ K) [ t > (4.54) 

j(._x) It> = t(J~ to) + K) If> (4.55) 

even in the case when the Hamiltonian is not simply linear in the group 
generators one can-exactly in the same way as in Section 2-obtain a dia- 
grammatic expansion of Z to any order. The calculation of the dynamical 
correction-not explicitly reported here-is formally identical in the case 
when H is bilinear, and can be straightforwardly extended to higher order 
interactions. 

5. Conclusion 

It is worth noticing, in going through the previous example, that the sum 
over k in equation (4.42) is convergent only if 

~> [ 2 c°th-a/sk ] 
maxk ~-k J (5.1) 

This points out how the topology of the homogeneous space of  the group 
is relevant in creating the singularities of Z. The particularly simple expression 
of Z as an integral over a manifold whose geometry is generally known from 
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the group structure, should allow an a priori discussion o f  such singularities, 
without  explicit ly performing the calculation. 
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